We will show that even convexity follows also from the two axioms Archimedean, then for any gamble \(D \)

\[D \ni 0 \notin D; \]

\[D_f \ni \text{if } f < g \text{ then } f \in D; \]

\[D_f \ni \text{if } f < D \text{ then } f \not\in D; \]

\[D_f \ni \text{if } f + g \not\in D. \]

A coherent set of desirable gambles is a convex cone that includes the gambles \(f > 0 \) and has nothing in common with \(\{0\} \) and the gambles \(f < 0 \). Note that Axiom \(D_f \) only requires that point-wise positive gambles be desirable: we do not require admissibility or weak dominance, even in finite state spaces.

Probabilities

Given a probability mass function \(p \) with corresponding expectation operator \(E_p \), the set

\[D_p := \{ f \in \mathcal{L} : E_p(f) > 0 \}, \]

is coherent. It is the smallest coherent set of desirable gambles whose lower prevision is equal to \(E_p \). We have that every set of desirable gambles \(D \) is in fact a \(D_p \) if and only if it is an open semispace that includes the gambles \(f > 0 \). We say that a set of desirable gambles \(D \) is *represented* by a set \(K \) of probability mass functions when \(D = \bigcap_{p \in K} D_p \).

When is a coherent set of desirable gambles represented by a set of probability mass functions?

If \(D \) is represented by a set of probabilities, then the largest \(K \) that represents \(D \) is convex, but not necessarily closed. [Fabio Cozman, *Evenly convex credal sets*, IJAR 2018] pointed out that \(D \) is represented by \(K \) if and only if \(D \) is *evenly convex*—meaning that it is an arbitrary intersection of affine open semi-spaces—and gives an elegant equivalent requirement in terms of gambles.

Examples

Taken from [Fabio Cozman, *Evenly convex credal sets*, IJAR 2018]:

- evenly convex
- not evenly convex
- not evenly convex
- evenly convex
- evenly convex
- not evenly convex
- not evenly convex
- not evenly convex
- evenly convex
- evenly convex
- not evenly convex

We will show that even convexity follows also from the two axioms SSK–Archimedeanity and SSK–Extension from [Seidenfeld, Schervish, and Kadane, *A representation of partially ordered preferences. The Annals of Statistics 1995*].

SSK–Archimedeanity

The requirement SSK–Archimedeanity from [Seidenfeld, Schervish, and Kadane, A representation of partially ordered preferences. The Annals of Statistics 1995], expressed for gambles, is (with the aid of a lemma) equivalent to:

Definition (SSK–Archimedeanity) A set of desirable gambles is called SSK–Archimedean when \(D + a(D) \leq D \), for any set of gambles \(A \) and \(B \), their addition is defined as \(A + B := \{ a + b : a \in A, b \in B \} \).

SSK–Archimedeanity takes core of the internal part of the boundary.

Proposition Consider any coherent set of desirable gambles \(D \). If \(D \) is SSK–Archimedean, then for any gamble \(f \) on a linear part of the boundary of \(D \), \(f \not\in D \) then the whole interior of this linear part of the boundary is contained in \(D \).

SSK–Extension

For the requirement SSK–Extension from [Seidenfeld, Schervish, and Kadane, A representation of partially ordered preferences. The Annals of Statistics 1995], we need two new notions:

Precluded desirability A gamble \(f \) is called precluded from being desirable when

\[\neg f \in c(D). \]

Precluded \(p \)-indifference A gamble \(f \) is called precluded from being \(p \)-indifferent to \(0 \) if assuming that \(f \) is a probability mass function such that \(\int f(x) = \lambda \) will be incompatible with \(D \), in the sense that \(E_p(f) \leq 0 \) for some \(p \in D \).

Definition (SSK–Extension) For any coherent set of desirable gambles \(D \), its SSK–Extension \(D^* \) is given by

\[D^* := \{ f \in \mathcal{L} : f \not\in D \text{ or } (\neg f \text{ is precluded from being desirable and } f \text{ is precluded from being } p\text{-indifferent to } 0) \}. \]

SSK–Archimedeanity and SSK–Extension take care of the boundary.

Proposition Consider any coherent set of desirable gambles \(D \) that is SSK–Archimedean. Then \(D^* \) is coherent and evenly convex.

Ice Cream Cone Corollary Consider any coherent set of desirable gambles \(D \) that is SSK–Archimedean. Then, \(D \) contains all its extreme non-exposed points if and only if \(D \) is evenly convex. This extends Theorem 16 of [Fabio Cozman, *Evenly convex credal sets*, IJAR 2018].