Exposing Some Points of Interest About Non-Exposed Points of Desirability

Arthur Van Camp
Heudiasyc, Université de Technologie de Compiègne, France

Teddy Seidenfeld
Dietrich College of Humanities and Social Sciences, Department of Philosophy, Carnegie Mellon University, USA

Sets of desirable gambles [6, 4, 3] are a very general and elegant framework to model uncertainty. A set of desirable gambles D is a set of gambles—which are real-valued maps on the finite possibility space Ω—that the subject strictly prefers to the status quo indicated by 0. The set of all gambles is denoted by L. We say that D is coherent if it is a convex cone that does not contain 0 and contains the positive gambles $L_0 \coloneqq \{ f \in L : f > 0 \}$, where we define $f > 0 \iff (\forall \omega \in \Omega) f(\omega) \geq 0$ and $f \neq 0$. Coherent sets of desirable gambles are more general than convex sets of probabilities, even when these convex sets are not required to be closed: indeed, they do not have an Archimedean condition and are therefore not representable by real-valued standard probabilities.

Recently, Cozman [1] has given an axiomatisation for sets of desirable gambles that make them uniquely representable by a convex, but not necessarily closed, set of probabilities. He shows that any evenly convex coherent set of desirable gambles—that is, a coherent set of desirable gambles that is an arbitrary intersection of affine open semi-spaces—is uniquely represented by a convex set of probabilities, and gives an elegant equivalent requirement in terms of gambles.

More than 20 years earlier, in 1995, Seidenfeld et al. [5] gave an axiomatisation of binary preferences that leads to a unique representation of convex sets of probabilities. Since binary preferences are closely related to sets of desirable gambles, Seidenfeld et al. [5]'s requirement must be similar to that of even convexity. There is however a difference: Seidenfeld et al. [5]'s options between which the subject must state his preferences, are horse lotteries, instead of gambles, but Cozman [1] has shown that their ideas can be straightforwardly used for gambles as well. Roughly speaking, and after translating to sets of desirable gambles, what Seidenfeld et al. [5] show, is, amongst other things, that any coherent set of desirable gambles that (i) satisfies an Archimedean axiom, which we will refer to as ‘SSK-Archimedeanity’, in the same vein as Cozman [1], and (ii) is the result of a particular extension, which we will refer to as ‘SSK-extension’, is uniquely represented by a convex set of probabilities.

Interestingly, in his paper, Cozman [1] shows that SSK-Archimedeanity is not sufficient for even convexity. He does so by providing an explicit example of a coherent and SSK-Archimedean set of desirable gambles that is not evenly convex. In this poster, we will expand on this connection between SSK-Archimedeanity, SSK-extension, and even convexity. We will show the extent of SSK-Archimedeanity more precisely, and argue that there are no other types of coherent sets of desirable gambles that are SSK-Archimedean but not evenly convex than the type of Cozman [1, Example 17]. Finally, we will argue that the combination of SSK-Archimedeanity and SSK-extension is equivalent to even convexity.

References

